
MICHIGAN JUSTICE STATISTICS CENTER
SCHOOL OF CRIMINAL JUSTICE

MICHIGAN STATE UNIVERSITY

DEC.
2016

CLEANING AND ANALYZING MICHIGAN
INCIDENT CRIME REPORTING DATA

(MICR) IN THE R STATISTICAL
COMPUTING ENVIRONMENT

Cleaning and Analyzing Michigan Incident

Crime Reporting Data (MICR) in the R

Statistical Computing Environment

Jason Rydberg, Ph.D.

School of Criminology and Justice Studies

Center for Program Evaluation

University of Massachusetts Lowell

Michigan Justice Statistics Center

Michigan State University

December, 2016

Michigan Justice Statistics Center
The School of Criminal Justice at Michigan State University, through the Michigan Justice
Statistics Center, serves as the Statistical Analysis Center (MI-SAC) for the State of
Michigan. The mission of the Center is to advance knowledge about crime and justice
issues in the state of Michigan while also informing policy and practice. The Center works
in partnership with the Michigan State Police, Michigan’s State Administering Agency
(SAA), as well as with law enforcement and criminal justice agencies serving the citizens of
Michigan. For further information please visit the Michigan Justice Statistics Center.

About the Author
Jason Rydberg is an assistant professor in the School of Criminology and Justice Studies at
the University of Massachusetts Lowell, where he is also an associate with the Center for
Program Evaluation. Jason received his PhD from the School of Criminal Justice at
Michigan State University in 2014. His research interests include sex offender policy,
prisoner reentry and recidivism, the evaluation of criminal justice programs, and
quantitative methods. His research has recently been featured in the Journal of
Quantitative Criminology, the Journal of Criminal Justice, Criminology and Public Policy,
and Justice Research and Policy.

Author Contact Information
Jason Rydberg, Ph.D.
Assistant Professor, School of Criminology and Justice Studies
Associate, Center for Program Evaluation
University of Massachusetts Lowell
113 Wilder Street
Lowell, MA 01854
E: Jason Rydberg@uml.edu

Acknowledgements
This guide is inspired by the Introduction to R Workshop given by Dr. Dave Armstrong at
the ICPSR Summer Program. It also draws on materials developed by doctoral students at
the University of Massachusetts Lowell - Scott Walfield and Kyleigh Clark.

Last compiled in LATEX Friday 2nd December, 2016

1

http://cj.msu.edu/programs/michigan-justice-statistics-center/
mailto:Jason_Rydberg@uml.edu

Contents

1 Preface 3

2 A Gentle Introduction to R 5
2.1 Getting Started with R . 5

2.1.1 Installing R . 5
2.1.2 Installing and Loading R Packages 6
2.1.3 Setting up R Script (.R Files) . 6

2.2 R as an Object-Oriented Programming Language 7
2.3 Loading and Manipulating Data . 8
2.4 Working with Data Frame Variables . 10
2.5 Data Management and Manipulation in R 11

2.5.1 Subsetting (Indexing) Data . 11
2.5.2 Creating and Recoding Variables . 14
2.5.3 Arranging and Merging . 17

2.6 Moving Forward . 18

3 Working with MICR in R 19
3.1 Understanding the MICR File Structure . 19
3.2 Linking the MICR Files . 21
3.3 Subsetting and Aggregating MICR . 22

3.3.1 Selecting Particular Units . 22
3.3.2 Counting Unique Units within Geographies 24

3.4 Moving Forward . 25
3.4.1 Building on this Tutorial . 26

4 Appendix 27
4.1 Annotated .R Script for Cleaning and Merging MICR 27

2

1 Preface

This guide has been developed to support researchers interested in working with incident-
based crime data within the R statistical computing environment. Specifically, this tutorial
focuses on the Michigan Incident Crime Reporting (MICR) system, but the practices de-
scribed here could be applied to the National Incident-Based Reporting System (NIBRS)
more broadly. Historically, criminological research has been heavily influenced by summary-
based reporting systems, particularly the Uniform Crime Reports (UCR).1 As data only
reflecting crimes reported to the police, the limitations associated with these data are well
known among researchers and students of criminology alike.2 Because the NIBRS program
data is generated in a similar fashion - as crimes reported to the police - it does not solve
many of the dilemmas posed by UCR data. However, as an incident-based reporting system,
NIBRS is able to make major improvements on the UCR program as it related to the unit
of analysis.

As a summary-based system, the UCR program reports data utilizing the reporting
agency-year as the unit of analysis. That is, a researcher accessing these data would be
capable of describing the number of specific violent or property offenses reported by a given
law enforcement agency in a given year. This data structure still has wide utility in crimino-
logical research, particularly for describing variation in long-term crime trends. However, in
many respects this data structure is limiting. For instance, if a researcher were interested in
describing variation in intimate partner violence across jurisdictions, the UCR data are not
capable of differentiating aggravated assaults or homicides committed by intimate partners
from any other aggravated assault or homicide. In the late 1980s, the U.S. Department of
Justice began preparations for a new data collection system that would utilize incident-level
data. This system eventually became what we known today as NIBRS.3 The NIBRS system
remedies the unit of analysis limitations associated with summary data by reporting data
at multiple units of analysis nested within crime incidents. That is, within each incident
participating agencies report data concerning the characteristics of the reporting agency, the
victim(s) involved, the offenders involved, any arresttees, and details concerning property
lost, recovered, or seized. Each of these nested units are detailed within data files known as
segments.

The additional units of analysis and variables provided by NIBRS allow for tremendous

1See Maxfield, M. (1999). The National Incident-Based Reporting System: Research and Policy Impli-
cations. Journal of Quantitative Criminology 15 (2), 119-149.

2See Loftin, C., & McDowall, D. (2010). The use of official records to measure crime and delinquency.
Journal of Quantitative Criminology 26 (4), 527-532.

3See Addington, L. (2008). Assessing the extent of Nonresponse Bias on NIBRS estimates of violent
crime. Journal of Contemporary Criminal Justice 24 (1), 32-49.

3

Preface

flexibility in addressing a variety of research questions. However, this feature of NIBRS also
presents a double-edged sword. The complex file structure of NIBRS does not easily lend
itself to analysis. For example, within a given incident there may be multiple victims who
may or may not be associated with multiple offenders who may or may not have committed
a variety of offenses against said victims. To this extent, building data files from NIBRS
segments that align with the principles of tidy data can be difficult. Tidy data requires
that each row of a data file will represent a unique unit (e.g., a person, a person observed
at a particular time point, an agency, etc.), and that each variable describing those units
will make up a column of the data set.4. This guide will briefly introduce some of the tools
within the R environment that can help facilitate the cleaning and statistical analyses of
these incident-based data.

4See Wickham, H. (2014). Tidy data. Journal of Statistical Software 59 (10), 1-23

4

2 A Gentle Introduction to R

2.1 Getting Started with R

R is an open source statistical computing enviroment. This means that it is free to download
and use, compared to other environments - such as SPSS, SAS, and Stata - for which licenses
must be purchased. R can be downloaded from http://www.r-project.org/. It will likely be
helpful to download RStudio as well, which is a free-to-use interface for R.1 RStudio is
available for download from http://www.rstudio.com/. RStudio provides an interface that
is more similar to Stata, which users old and new are likely to find more informative and
user friendly than the base R interface. As opposed to being a point-and-click interface,
both R* and RStudio are command line based, meaning that they are controlled through
scripted commands entered into a prompt.

In regards to what constitutes R, specifically, it is an implementation of the S statistical
programming language developed at Bell Labs. Because R is open source, this means that it
is open to the community to develop new techniques and tools to be used in the environment.
Fortunately, the R community is large, active, and growing - which means that when new
statistical techniques are developed, they are often implemented in R before they are incor-
porated into SPSS and the like. Additionally, the user community continually develops new
tools designed to make data cleaning, manipulation, and graphics easier and more powerful.
Hadley Wickham’s dplyr and John Fox’s car packages being excellent examples that will
be utilized in this guide

2.1.1 Installing R

Installing R on your computer is free and relatively simple. The following will help you install
R on a Windows computer. The procedure is likely somewhat different for installation on a
Mac.

1. R is available from http://www.r-project.org/. Navigate to this URL.

2. On the homepage, there is a link for CRAN on the left under the heading ”Downloads,
Packages”.

3. A list of servers to download R from should appear. Choose your favorite, or at random
- they all produce the same result.

1In order for RStudio to work properly, R must already be installed.

5

http://www.rstudio.com/
http://www.r-project.org/

1. Getting Started with R A Gentle Introduction to R

4. Choose the link for your operating system.

5. If this is your first time installing R, click the ”base” link, and then the link to download
the most recent version of the program. You should now have downloaded an .exe file
to setup R.

6. Execute the file (i.e., double-click, or click ”Run” if prompted). You should now be
well on your way to having R installed on your machine (...Bam!).

7. An optional, but highly recommended final step is to download and install RStudio.
It is available from http://www.rstudio.com/ and will only function once R is already
installed.

2.1.2 Installing and Loading R Packages

When a statistical computing environment such as SPSS or Stata is installed, it already
contains all (or most) of the tools and techniques at its disposal. When R is installed, it
contains some basic capabilities, but user-written statistical tools and techniques (referred
to as *packages*), must be downloaded and installed. R packages are available from CRAN
(Comprehensive R Archive Network) and can be installed by using the install.packages

function. For instance, the command install.packages("car", dependencies = TRUE)

will install the car package (standing for ’Companion to Applied Regression’), as well as any
packages that car requires to function. Packages only need to be installed on a computer
once. As with installing the program, you may be prompted to select a CRAN mirror the first
time you are installing packages - any one will do. There are currently thousands packages
for free on CRAN, all of which are tested before they are accepted into the CRAN repository.

After a package has been installed, it must be loaded by utilizing the library function.
For instance, the command library(car) will load the car package. Entering search()

will display all of the packages that are loaded for the current session. Note that if multiple
packages are loaded which share a common function (e.g., car and psych each contain a
function called logit()), the package loaded last will be utilized.

2.1.3 Setting up R Script (.R Files)

The R and RStudio interfaces allow for two methods of entering commands. There is
manual command entry, where commands are entered directly into the console, and there is
also the possibility of running commands via a .R script. Script is conceptually similar to
a SPSS syntax file, or a Stata .do file. As a general piece of advice, you should primarily
enter commands via a script since this maintains a record of the work that you have done -
which aids reproducibility and enables you to quickly and easily identify and correct errors
without significantly altering your original data file.

For any given project, a .R script will generally begin with three sets of commands. First,
loading necessary packages via the library() function. For instance, the following will load
the car and dplyr packages.2

2The semi-colon ; is the equivalent of hitting Enter, and tells R to proceed to the next command as if it
were a new line of code.

6

2. R as an Object-Oriented Programming Language A Gentle Introduction to R

> library(car) ; library(dplyr)

Second, setting the working directory. This is the file path directory that **R** will
look for files and save output. It makes sense to create a new directory for any given
project/analysis. Entering ‘getwd()‘ will display the current working directory. The ‘setwd()‘
function sets the working directory to the desired filepath. For instance, the following com-
mand would set the working directory to my Dropbox cloud storage.

> setwd("C:/Users/Jason/Dropbox/R")

Note that R uses forward slashes ”/” in the file path, as opposed to the Windows de-
fault, which is the back slash. Third, options allows you to change some of the defaults
in R (https://stat.ethz.ch/R-manual/R-devel/library/base/html/options.html). Uncomfort-
able working with scientific notation? You can start off your script with a command to change
that option:

> options(scipen = 999)

2.2 R as an Object-Oriented Programming Language

R commands can be entered directly into the console, or run through script. When a
command is entered either way, it is printed to the console. For instance, we can use R like
a calculator.

> 5 + 5

[1] 10

Here, we told R to add 5 + 5, and it gave us the output of 10. If we wanted to get
this result again, we would be required to enter 5 + 5 again. R is an *object-oriented*
programming language, in that it is possible to save the results of our commands to named
objects. For instance, rather than simply printing the previous command to the console,
let’s save it to an object called x.

> x = 5 + 5

Now, x contains the result of our command. If we were to enter x as a command, it will
print the result to the console.3

> x

[1] 10

This feature of the R language may seem simple, but it turns out to be quite powerful
and important. For instance, we could now use this object in other commands:

3Note that simply entering the name of an object (here it is x) into the command line is the equivalent
of the command print(x).

7

https://stat.ethz.ch/R-manual/R-devel/library/base/html/options.html

3. Loading and Manipulating Data A Gentle Introduction to R

> x + 2 # Addition (+)

[1] 12

> x / 2 # Division (/)

[1] 5

> x * 2 # Multiplication (*)

[1] 20

> x + x # Adding two objects

[1] 20

> x ^2 # Exponents (^)

[1] 100

2.3 Loading and Manipulating Data

In the previous example, we introduced ’objects’ to demonstrate that we can store output.
In the example above, we stored a single value in an object called x. This opens a path to
reading and importing datasets into R. To load an existing dataset into R, we can save it
to a special kind of object called a data.frame. So, how does one get their data into a data
frame? There are a variety of functions for reading data into R, and it is capable of reading
numerous types of data files. There are several functions for reading types of data in the base
R installation (e.g., read.table for reading text files, and read.csv for reading comma-
separated values spreadsheets). In order to read files built by other statistical programs,
such as SPSS or Stata, the foreign package will be necessary.

> install.packages("foreign", dependencies = TRUE) # Install the package

> library(foreign) # Load the package

foreign contains functions for reading numerous different data types, but for this exam-
ple we will focus on reading SPSS data into R. This is accomplished using the read.spss

function, which has several arguments with default values.4

> args(read.spss)

function (file, use.value.labels = TRUE, to.data.frame = FALSE,

max.value.labels = Inf, trim.factor.names = FALSE, trim_values = TRUE,

reencode = NA, use.missings = to.data.frame)

NULL

4A function with an argument with a default value will simply use that argument if it is not explicitly
called. If you decide that the default value is not that you want, you will need to specify that argument in
the function call.

8

3. Loading and Manipulating Data A Gentle Introduction to R

Typing help(read.spss) will give additional details on these arguments and their pos-
sible values. The first argument asks for the file name. If the data file is not in your working
directory, then you will need to specify the entire file path. If the file is in your working
directory then all you will need is the file name. Other arguments take logical values, such
as TRUE if you would like to switch that argument on. For instance, setting ‘to.data.frame =
TRUE‘ will return a data frame when we call the function (instead of a list object, which is
the default setting). Additionally, it was noted earlier that SPSS often applies value labels
to the levels of factors. We would like to use those value labels as actual for our dataset,
otherwise we will not know what the numbers stand for. We will set use.value.labels

to TRUE. In this case, I will use the 1998 Pennsylvania Commission on Sentencing dataset
(ICPSR 3450) as an example. These data are publicly available, describing characteristics
of individuals convicted in Pennsylvania criminal courts.

> pcs = read.spss("PCS 1998 Data.sav", to.data.frame = TRUE,

use.missings = TRUE, use.value.labels = TRUE)

> names(pcs) # Lists all variable names within the data frame

[1] "ID" "CID" "DOB"

[4] "DOS" "DOSAGE" "SEX"

[7] "RACE" "COUNTY" "PCSOFF"

[10] "OFFLABEL" "GRAD" "OGS"

[13] "PRS" "MANMIN" "DISP"

[16] "INCSTR" "INCTYPE" "INCMIN"

[19] "INCMAX" "CONFORM" "INCARCERATED"

When working with datasets we save them to objects. In this case, we have saved our
dataset to a data.frame object called pcs. There are several functions that are helpful
for exploring the contents of a data.frame. The ‘str‘ function tells us the structure of an
object, including it’s class (this one is a ‘data.frame‘), the number of observations (units)
and variables, as well as the name and class of each variable. More on classes coming up in
the next section.

> summary(pcs) # Descriptive statistics on every variable

> str(pcs) # Dataset and variable structure

> View(pcs) # View the first 100 columns of the data as a spreadsheet

> utils::View(pcs) # Creates a popup window with the entire spreadsheet

There are numerous online tutorials for reading data into R, in case this example does not
demonstrate the necessary information. Helpful guides are maintained by CRAN, Quick-R,
and UCLA. For other common forms of data, read.dta is a function in the ‘foreign‘ package
which reads Stata files into R.5 In essence, to read a type of data file into R, you will need
to match the correct function to the file type. Data also commonly comes in Excel form
(.xls or .csv); R works best with the latter and does not require the aforementioned package.
To read a CSV file, we would use the following: read.csv("mydata.csv", header=TRUE).
When in doubt, Google ”how to open [.extension] files in R”.

5This raises an issue with the open source nature of R. The read.dta function has not be updated
recently, and can only open Stata files from version 12 or earlier. Fortunately, some intrepid programmers
have written a new package ‘readstata13‘, which can open more recent versions of Stata files.

9

http://cran.r-project.org/doc/manuals/r-release/R-data.html
http://www.statmethods.net/input/importingdata.html
http://www.ats.ucla.edu/stat/r/faq/inputdata_R.htm

4. Working with Data Frame Variables A Gentle Introduction to R

2.4 Working with Data Frame Variables

Data frames are comprised of observations of variables. In order to access individual variables
for analysis, the most common option is to use the $ operator. For instance, pcs is the data
frame. SEX is a variable in the pcs data frame. In order to access the SEX variable, it is
formally pcs$SEX.

> head(pcs$SEX)

[1] Male Male Male Male Male Male

Levels: Female Male

R data frames store different sorts of variables. The different kinds of variables are called
”classes”, which roughly correspond to the level of measurement of the variable. Using the
above example, SEX is a vector of class factor, or nominally measured data. For instance,

> class(pcs$SEX)

[1] "factor"

Alternatively, we could use the str function on a variable which combines the above two.
This also alerts us to a potential issue for later, but we will cross that bridge when we get
to it.

> str(pcs$SEX)

Factor w/ 2 levels "Female ","Male ": 2 2 2 2 2 2 2 2 1 2 ...

In R, factor variables represent categorical, or nominal data. Factors have different
values called levels. In this case, there are 2 levels to SEX (FEMALE and MALE). These
have no intrinsic quantitative meaning. Unlike in SPSS or Stata, where it is common to
give factor variables numeric values, but then label those numeric values, in R it is more
appropriate to use the labels themselves as the data entered so that we know that the
variable is categorical, and each category has a meaning.6 On the other hand, variables of
the numeric class contain quantitative data. For instance, the variable DOSAGE contains the
defendant’s age at sentencing.

> head(pcs$DOSAGE)

[1] 39 28 34 18 19 37

> class(pcs$DOSAGE)

[1] "numeric"

There are several other common classes of data, which will be covered to varying extents
later on. character variables contain character strings, integer variables contain whole

6It is also worth noting that factor variables have underlying numeric values. In this case, FEMALE is equal
to 1, and MALE is equal to 2.

10

5. Data Management and Manipulation in R A Gentle Introduction to R

number values and are essentially equivalent to numeric variables for all intents and pur-
poses. logical variables contain values of TRUE and FALSE, which can be used to represent
dichotomous variables, among other things.

We can perform functions on variables. For instance, we can gather simple descriptive
statistics. The mean function will produce the mean, and the sd function will produce the
standard deviation. When we use summary on a numeric variable, it produces the five number
summary, plus the mean.

> mean(pcs$DOSAGE) #the mean - use help(mean) for additional arguments

[1] 32.38741

> sd(pcs$DOSAGE) #the standard deviation

[1] 12.86041

> summary(pcs$DOSAGE) #the five number summary

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.00 23.00 30.00 32.39 38.00 99.00

> mean(pcs$SEX) #not surprisingly, the mean doesn't work on a factor

[1] NA

2.5 Data Management and Manipulation in R

This section of the presentation concerns basic data management and manipulation tech-
niques using R. As it turns out, R is a very powerful tool for data management, and proficient
users are able to accomplish complicated tasks in a short period of time.

2.5.1 Subsetting (Indexing) Data

So far, we have been working with the entire pcs file. Given the nature of our research
questions, we may be in a position where we are actually not interested in working with the
entire dataset, and instead only want to work with a selection (or subset) of those data. In
R there are several means of subsetting data frames.

The first means is to use what I will call bracketing. To do this, we have to understand
something about matrices. A matrix is a rectangular array of numbers, which can be de-
scribed by the number of its rows and columns (i.e., it’s dimensions). A data frame in R
is essentially a matrix, which can contain all sorts of information (not just numbers). Let’s
take a look at the dimensions of our data frame.

> dim(pcs)

[1] 48881 21

When we take a look at the dimensions of pcs, we see that it is a data frame with 48881
rows and 21 columns. As we have been working with variables by using the $ operator,
we can actually work with variables by referring to their column placement. In R, this is
accomplished by using the square brackets [,]. Inside the brackets, the information on

11

5. Data Management and Manipulation in R A Gentle Introduction to R

the left side of the comma refers to the rows, and the information on the right side of the
comma refers to the columns.

We can use brackets (i.e., object[,]) to identify the subset of rows or variables that
we would like. For instance,

> pcs[1, 1] #This returns the value in the first row and the first column

[1] 1

> mean(pcs[, 5]) #Takes the mean of the 5th column, which is DOSAGE

[1] 32.38741

> #This creates a new data frame our of the first 10 rows and first 5 variables

> pcs.sub = pcs[1:10, 1:5]

> pcs.sub

ID CID DOB DOS DOSAGE

1 1 NA 04/13/1959 06/02/1998 39

2 2 NA 10/02/1969 04/22/1998 28

3 3 NA 06/18/1964 09/14/1998 34

4 4 NA 06/22/1980 12/29/1998 18

5 5 NA 02/06/1979 07/09/1998 19

6 6 NA 07/08/1961 10/26/1998 37

7 7 NA 08/05/1973 04/06/1998 24

8 8 NA 03/28/1977 09/21/1998 21

9 9 NA 01/09/1979 09/28/1998 19

10 10 NA 12/03/1951 09/08/1998 46

Here, we saved a small number of observations and variables to a new data.frame object,
pcs.sub. We can also use c() (concatenate) to be very specific about the rows and variables
we want. For instance,

> pcs.sub = pcs[c(2, 4, 6, 8, 10), c(2, 8, 10)]

> pcs.sub

CID COUNTY

2 NA Philadelphia

4 NA Armstrong

6 NA Bucks

8 NA Allegheny

10 NA Beaver

OFFLABEL

2 Retaliate Against Witness/Victim

4

6 Simple Assault

8 Possession:Small Amt of Marij(30g marij or 8g hash

10 Simple Assault

> pcs.sub = pcs[c(1:99, 200:299),] #keeps all variables

> pcs.sub = pcs[, c(1:10)] #All rows, but first 100 variables

12

5. Data Management and Manipulation in R A Gentle Introduction to R

These forms of subscripting can be helpful if particular row or column numbers are mean-
ingful. But it is more likely that we will want to select rows that have particular values of
particular variables. For instance, only cases that were sentenced to a period of incarceration.
We can use brackets to achieve this as well.

> table(pcs$INCARCERATED)

0 1

22098 26783

> pcs.sub = pcs[pcs$INCARCERATED == 1,]

> table(pcs.sub$INCARCERATED)

1

26783

In the above example, we created a subset of the original data frame, selecting only the
rows in which INCARCERATED is equal to 1. Notice that in the above example I used the ==

operator. This is a logical operator in R which means ”is equal to”. There are a number of
logical operators that can help us select and subset data.

� < less than

� <= less than or equal to

� > greater than

� >= greater than or equal to

� == exactly equal to

� != does not equal

� x! not x

� x | y x OR y

� x & y x AND y

For instance, let’s create a dataset that is comprised of just those sentenced to incarcer-
ation, and with no prior record (a PRS of zero).

> pcs.sub = pcs[pcs$INCARCERATED == 1 & pcs$PRS == 0,]

As you may have noticed, it can be a little cumbersome to continually call for the name
of the data frame (pcs$) when subsetting, particularly if you have a rather complicated set
of conditions that you are specifying. One way around this is to use the dedicated subset

function. It works similarly to bracketing, but only requires calling for the data frame once.
This time, we will call for any prior record score lower than 3.

> pcs.sub = subset(pcs, INCARCERATED == 1 & PRS < 3)

13

5. Data Management and Manipulation in R A Gentle Introduction to R

2.5.2 Creating and Recoding Variables

In R, although we can look at our dataset using View, there is no intuitive spreadsheet-
like data editor, such as in Excel or SPSS. Instead, what we will do is create variables as
separate objects, which we can then append to our dataset. To demonstrate, let’s say that
we would like to create a transformation of our age variable, for instance, taking its square
root (accomplished with the sqrt() function). Let’s store this in an object called sqrt.age:

> sqrt.age = sqrt(pcs$DOSAGE)

> head(sqrt.age)

[1] 6.244998 5.291503 5.830952 4.242641 4.358899 6.082763

> summary(sqrt.age)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.000 4.796 5.477 5.599 6.164 9.950

> length(sqrt.age)

[1] 48881

This object exists on its own, separate from our data frame. There are a few ways that
we can add it to the pcs data frame. First, we can bind the column to pcs using the
cbind() function (or ”column bind”). This will append the sqrt.age object to the data
frame. Notice that we overwrite pcs by doing this.

> pcs = cbind(pcs, sqrt.age)

> summary(pcs$sqrt.age) # Recognizes the new variable

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.000 4.796 5.477 5.599 6.164 9.950

Alternatively, we can initially create the variable as already being part of the data frame.
This time, standardize age and add it to the pcs data frame (using the function scale). We
will call this variable z.age. Notice that at this moment there is no variable called z.age in
the dataset. The code below will create a this new variable by specifying pcs$z.age:

> pcs$z.age = scale(pcs$DOSAGE)

> summary(pcs$z.age)

V1

Min. :-2.5184

1st Qu.:-0.7299

Median :-0.1856

Mean : 0.0000

3rd Qu.: 0.4364

Max. : 5.1797

Because we specified a variable in pcs that did not yet exist, it created a new variable.
If you give it the name if an existing variable, R will overwrite it (and will not warn you

14

5. Data Management and Manipulation in R A Gentle Introduction to R

about it!). So be careful. So far we have created new variables that are statistical transfor-
mations of others. How about changing the values of an existing variable? Recoding can be
accomplished through a variety of means. The first is by use of bracketing. Let’s take a look
at the variable ‘INCMIN‘, which measures the minimum sentence length in months.

> summary(pcs$INCMIN)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.0 2.0 36.0 481.9 1000.0 1000.0

Wow, this is really skewed. In fact, that maximum value of 1,000 months (i.e., 83 years)
looks a little suspicious (check them out using View, they are actually 999.9999). Let’s see
how many of those there are. Here we will use the function length to count the number of
observations which meet a specified criteria.

> length(which(pcs$INCMIN == 999.9999)) #A function within a function!

[1] 23364

Ok, so it looks like those values of 999.9999 are some sort of missing value, but R is
not recognizing them as such. Let’s recode INCMIN to change all of those values to missing.
We can accomplish this by use of the brackets. Because we are changing the values of
pcs$INCMIN, there is no column to specify (because it is a single variable, by definition it is
a single column of data).

> pcs$INCMIN[pcs$INCMIN == 999.9999] = NA

> summary(pcs$INCMIN)

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's

0.000 0.490 3.000 7.459 9.000 300.000 23364

What this code translates to is ”For the variable INCMIN, take all the rows for INCMIN

that are equal to 999.9999 and change them to NA.” This will change the value to the R
missing data class. If you added quotation marks around the NA (i.e., "NA"), this would
change the class to character. We can also change values from numeric to factor, or
vice versa. For instance, right now the variable INCARCERATED is coded as numeric, where
0 presumably means ”No” and 1 presumably means ”Yes”. Let’s make this explicit. There
are (at least) two ways to accomplish this. First, we will use brackets. Let’s save it to a new
variable called incarc.fac just to be safe. We will start by creating a blank variable that is
comprised only of NA values, and then we will copy over those values. We will then convert
all of the ‘1‘ values to Yes, and 0 to ‘No‘.

> pcs$incarc.fac = NA

> pcs$incarc.fac[pcs$INCARCERATED == 1] = 'Yes'

> pcs$incarc.fac[pcs$INCARCERATED == 0] = 'No'

> table(pcs$incarc.fac)

No Yes

22098 26783

15

5. Data Management and Manipulation in R A Gentle Introduction to R

> str(pcs$incarc.fac)

chr [1:48881] "No" "No" "No" "No" "No" ...

Alright, so we have our new variable, but notice that it is a character variable, and not
a factor. To finish things off, we can use the factor function to convert the variable to a
factor, specifying it’s levels and setting the reference category. The first value of the levels

argument will always be the reference category.

> pcs$incarc.fac = factor(pcs$incarc.fac, levels = c('No', 'Yes'))

> table(pcs$incarc.fac)

No Yes

22098 26783

> str(pcs$incarc.fac)

Factor w/ 2 levels "No","Yes": 1 1 1 1 1 1 1 1 1 1 ...

Note, We can also use the within function to avoid having to call for the data frame
over and over.

> pcs = within(pcs, {

incarc.fac = NA

incarc.fac[INCARCERATED == 1] = 'Yes'

incarc.fac[INCARCERATED == 0] = 'No'

incarc.fac = factor(incarc.fac, levels = c('No', 'Yes'))

})

> table(pcs$incarc.fac)

No Yes

22098 26783

> str(pcs$incarc.fac)

Factor w/ 2 levels "No","Yes": 1 1 1 1 1 1 1 1 1 1 ...

The second way to recode variables from numeric to factor, or even from factor to factor is
to use the recode function, which is part of the car package (help(recode)). The function
works similarly to the recode function in SPSS. We can specify values or groups of values
to become other values. To demonstrate, let’s convert the RACE variable to one with fewer
categories. This will also give us a chance for a teaching moment concerning character strings
in R. First, let’s call up a frequency table for RACE to see its values, and then use the recode

function to create a race.recode variable. Notice that it has several arguments that we can
specify.

> table(pcs$RACE, useNA = "ifany")

Am Indi Asian Black Hispani Other Unknown White

22 164 13752 2756 115 1809 30263

16

5. Data Management and Manipulation in R A Gentle Introduction to R

> library(car)

> pcs$race.recode = recode(pcs$RACE, "'White' = 'White';

'Black' = 'Black'; 'Hispani' = 'Hispanic';

c('Am Indi', 'Asian', 'Other') = 'Other';

else = NA",

as.factor.result = TRUE,

levels = c('White', 'Black', 'Hispanic', 'Other'))

> table(pcs$race.recode, useNA = "ifany")

White Black Hispanic Other <NA>

0 0 2756 22 46103

Whoa, something isn’t right. Let’s get to the bottom of this.

> str(pcs$RACE) #Notice the trailing white space following "Asian "

Factor w/ 7 levels "Am Indi","Asian ",..: 3 4 7 7 7 3 7 3 7 3 ...

This is a common issue with datasets maintained in other platforms, as trailing or leading
white space may exist but goes unnoticed. We will use a handy function in the stringr

package called str trim to trim all the leading and trailing white space from RACE.

> #install.packages("stringr", dependencies = TRUE)

> library(stringr)

> pcs$RACE = str_trim(pcs$RACE)

> pcs$race.recode = recode(pcs$RACE, "'White' = 'White';

'Black' = 'Black'; 'Hispani' = 'Hispanic';

c('Am Indi', 'Asian', 'Other') = 'Other';

else = NA",

as.factor.result = TRUE,

levels = c('White', 'Black', 'Hispanic', 'Other'))

> table(pcs$race.recode, useNA = "ifany") #That's more like it!

White Black Hispanic Other <NA>

30263 13752 2756 301 1809

2.5.3 Arranging and Merging

Data frames can be arranged by values of a single variable or multiple variables. In the base
installation, sorting is not very intuitive. For instance, we could order the data by the name
of sentencing county using brackets and the order function.

> pcs = pcs[order(pcs$COUNTY),]

> head(pcs$COUNTY)

[1] Adams Adams Adams Adams

[5] Adams Adams

67 Levels: Adams Allegheny ... York

17

6. Moving Forward . . . A Gentle Introduction to R

Fortunately, the dplyr package has a variety of functions for manipulating data frames.
This is accomplished with the arrange function. Lets order the data in ascending order by
COUNTY and in descending order by offense seriousness and then ascending by offender age.

> #install.packages("dplyr", dependencies = TRUE)

> library(dplyr)

> pcs = arrange(pcs, COUNTY, -OGS, DOSAGE)

Now that we have arranged the data by the sentencing county, perhaps it would be useful
to merge some county-level data onto our dataset. This can be accomplished by merging
data frames. First, let’s read in a new data frame containing the county data. It is a .csv
file called ”PA County Data”, so we will use the read.csv function to read it in.

> county = read.csv("PA County Data.csv")

> str(county$COUNTY) #No trailing space

Factor w/ 67 levels "Adams","Allegheny",..: 1 2 3 4 5 6 7 8 9 10 ...

To make sure the merging works properly, let’s use str trim on the pcs$COUNTY variable.
That way we have equivalent values across the datasets. We will use the merge function to
merge the two data frames. We specify the name of the matching variable using ‘by =‘.7

The all.x argument specifies that we want the new data frame to keep all the cases in pcs,
even if there are not matches found in the second dataset. We could then also calculate the
violent crime rate by dividing the crimes by the total population.

> pcs$COUNTY = str_trim(pcs$COUNTY)

> pcs.county = merge(pcs, county, by = "COUNTY", all.x = TRUE)

> pcs.county$vio.rate = with(pcs.county, (violent.crime / total.pop)*100000)

> head(pcs.county[, c('COUNTY', 'vio.rate')])

COUNTY vio.rate

1 Adams 96.39399

2 Adams 96.39399

3 Adams 96.39399

4 Adams 96.39399

5 Adams 96.39399

6 Adams 96.39399

2.6 Moving Forward . . .

This chapter of the tutorial covered some basic R functionality necessary for working with
the MICR data. Other tools will be necessary to reach the final product. The following
sections will describe the R script that cleans and merges the various MICR files. When
novel techniques are utilized in this process, they will be given a brief description. In the
(inevitable) event that the author forgets to describe one of these functions, please do not
hesitate to use the help function, or search for other examples of the function in action
online.

7You can merge on multiple variables using the c() function to specify the multiple matches, for instance
by = c(COUNTY, YEAR).

18

3 Working with MICR in R

3.1 Understanding the MICR File Structure

As opposed to summary-based reporting systems, such as the Uniform Crime Reports (UCR),
incident-based reporting systems have a considerably more complex file structure. This
complexity derives from the nested relationships for the various parties involved in each
incident (e.g., victim, offender), the various outcomes or processes involved with each incident
(e.g., arrests of offenders, offense committed, weapons/items used), and the contexts in
which the incidents take place (e.g., incidents involving multiple victims/offenders/offenses
occurring at a particular location in space and time). As such, incident-based reporting
systems such as the National Incident-Based Reporting System (NIBRS) are maintained at
the National Archive of Criminal Justice Data (NACJD) as multiple files, where each one
represents a separate unit of analysis (e.g., victim-level file, offender-level file, etc.). MICR
is characterized by a similar complex file structure. When MICR is extracted and exported
for analysis by external researchers, it is divided up into numerous comma-separated values
files. Specifically, the MICR download is packaged into relevant file segments including:

Table 3.1: MICR File Segments
File Name File Description Unit of Analysis
MICR 1 Administrative Segment Incident
MICR 3 Offender Segment Offender
MICR 5 Victim Segment Victim
MICR 7 Arrestee Segment Offender (Arrested)
MICR 9 Property Segment Incident
MICR ADDRESS Address Segment Incident
MICR ARMED Arrestee Armed Offender (Arrested)
MICR ATYPE Offense Activity Type Offense
MICR LEOKA Law Enforcement Officer Killed or Assaulted Victim (LE Officer)
MICR NDRUG Drugs Recovered Incident
MICR NPROP Property Lost / Recovered Incident
MICR OFFNS Offense Segment Offense
MICR OUSED Drugs/Equipement Used Offense
MICR VOFNS Victim-Offense Segment Victim-Offense Dyads
MICR VOR Victim-Offender Relationship Segment Victim-Offender Dyads

19

http://www.icpsr.umich.edu/icpsrweb/NACJD/

1. Understanding the MICR File Structure Working with MICR in R

These various files describe different units of analysis nested within incidents. Within
each incident, different units of analysis may be linked to one another on the basis of var-
ious transactions. For instance, Figure 2.1 highlights how victims, offenders, offenses, and
arrestees may be connected in a given incident. In this case, each victim may have been
offended against by a particular offender, who would have committed one or more offenses
against the victim(s). These offender(s) may have subsequently been arrested. Clearly, not
all incidents will represent such a complex web of relationships. For instance, in an incident
in which the offense is ”obstructing justice”, there may only be an offender present, and all
other segments will be null. Representing these data in a tidy format - one in which each
row represents a specific unit of analysis and each column represents an observation of those
units - would be impossible without utilizing multiuple active datasets. And even at this
point these multiple datasets would still need to be linked in order to conduct a variety of
analyses.

Figure 3.1: Visualizing the MICR Complex File Structure

One alternative to maintaining separate datasets for each unit is to create a dataset in
which each row represents a relationship between units. For instance, each row could be
offense-based, representing a victim-offender transaction. Producing such a dataset requires
careful management of identifiers for units within each dataset. Specifically, as it is exported,
MICR utilizes a unique identifier for each incident, known as the MIC1 NUMBER. Even though
the multiple file segments in Table 2.1 detail different units of analysis, most of them also
contain the MIC1 NUMBER for the incident to which they correspond. The following section
describes a strategy for linking the MICR files by combining the MIC1 NUMBER with other
variables from these files to create a system of common identifiers.

20

2. Linking the MICR Files Working with MICR in R

3.2 Linking the MICR Files

The following describes a specific strategy for linking several MICR files in order to produce
an offense-based dataset, in which each row represents an offense against a victim, committed
by a given offender (i.e., a victim-offender-offense triad). This process is facilitated by creat-
ing common identifiers across multiple datasets which can then be used for merging purposes.
For instance, the victim segment file (MICR5) contains a variable called MICR5 VICTIMNO

(victim number) which identifies unique victims within a given incident. Said another way,
for every unique MIC1 NUMBER, the victim number variable identifies victim #1, #2, through
victim #n. To this extent, the MIC1 NUMBER can be combined with the MICR5 VICTIMNO to
create a unique victim identifier (e.g., for MIC1 NUMBER - 123456 and MICR5 VICTIMNO -

1, the Victim ID would be 123456 1).
The victim number that is identified in the MICR5 file is replicated in other datasets. In

the MICR VOR file (victim-offender relationship) the variable VOR VICTIMNO refers to the
same victim number as in the MICR5 file. This means that a similarly constructed victim
ID in the VOR file can be linked to the MICR5 file on the basis of the MIC1 NUMBER and
the corresponding victim number. The files and variables necessary to make victim-offender-
offense likages are detailed in Table 2.2.

Table 3.2: Unique Identifier Creation
Identifier (File Name) Component Variables
Victim ID (MICR5) MIC1 NUMBER + MICR5 VICTIMNO

Victim ID (MICR VOFNS) MIC1 NUMBER + VOFNS VICTIMNO

Victim ID (MICR VOR) MIC1 NUMBER + VOR VICTIMNO

Offender ID (MICR3) MIC1 NUMBER + MICR3 OFFENDERNO

Offender ID (MICR VOR) MIC1 NUMBER + VOR OFFENDERNO

Offender ID (MICR7) MIC1 NUMBER + MICR7 ARRESTNO

Offender ID (MICR ARMED) MIC1 NUMBER + ARMED ARRESTNO

Offense ID (MICR OUSED) MIC1 NUMBER + OUSED OFFENSE CO

Offense ID (MICR OFFNS) MIC1 NUMBER + OFFNS OFFENSE CO

Offense ID (MICR ATYPE) MIC1 NUMBER + ATYPE OFFENSE CO

Offense ID (MICR VOFNS) MIC1 NUMBER + VOFNS OFFENSE CO

As the complete R script will demonstrate (see the Appendix), this linking can be accom-
plished using the paste() function, which combines multiple variables to create character
strings (similar to the concatenate function in SPSS). Once these identifiers have been cre-
ated within each dataset, they can be linked in a sequential process to produce the final
victim-offender-offense datafile. This process is detailed in Table 2.3.

Following the production of the triads file, multiple tools are available for reducing the
overall file (which will likely exceed 1 million rows of data, 2015 alone is 1.26 million rows)
to useful products for pursuing research questions. The following section will briefly describe
some of these tools.

21

3. Subsetting and Aggregating MICR Working with MICR in R

Table 3.3: Sequential MICR File Linking Process
Step File Created File A Linked to . . . File B Linking IDs
1 admin.addrs MICR ADDRESS MICR1 MIC1 NUMBER

2 victim.vofns MICR VOFNS MICR5 MIC1 NUMBER

Victim ID

3 victim.vofns.vor MICR VOR victim.vofns MIC1 NUMBER

Victim ID

4 ofnd.oused MICR OUSED MICR3 MIC1 NUMBER

5 arrest.armed MICR ARMED ofnd.oused MIC1 NUMBER

Offender ID

6 ofnd.oused.
arrest.armed

arrest.armed ofnd.oused MIC1 NUMBER

Offender ID

7 offns.atype MICR ATYPE MICR OFFNS MIC1 NUMBER

Offense ID

8 victim.vofns.vor.
ofnd.oused.
arrest.armed

ofnd.oused.
arrest.armed

victim.vofns.vor MIC1 NUMBER

Offender ID

Offense ID

9 victim.vofns.vor.
ofnd.oused.arrest
armed.offns.atype

offns.atype victim.vofns.vor.
ofnd.oused.
arrest.armed

MIC1 NUMBER

Offense ID

10 Full Triads File admin.addrs victim.vofns.vor.
ofnd.oused.arrest.
armed.offns.atype

MIC1 NUMBER

3.3 Subsetting and Aggregating MICR

The full victim-offender-offense triads file will be quite large and it is unlikely that the entire
file will be useful for any given research question. Instead, specific research questions will
require extracting specific rows or variables. The purpose of this section is to demonstrate
some possible tasks towards this end. Note that this section will make use of the full file
that is produced by the R script in the Appendix, and will not cover the requisite steps in
producing the file.

3.3.1 Selecting Particular Units

Now that unique ID numbers have been created for each distinct unit within the MICR data
(e.g., victims, offenders, offenses), it is possible to extract a dataset consisting of unique units.
Unfortunately, due to the complex file structure, such a dataset will necessarily represent
something of a compromise. For instance, a common strategy in the analysis of NIBRS data
is to use unique victims or offenders as the units of analysis, and each variable represents a
summary of the offenders or victims, or offenses that were associated with those units. Said
another way, each row may represent a unique offender, and there will be a variable for the

22

3. Subsetting and Aggregating MICR Working with MICR in R

average age of all of the victims they offended against in a given incident, a variable counting
the number of female victims, white victims, and so on.

R is a flexible environment for performing such a data reduction task. In the following
example, I will use the data.table package to create a file consisting of unique robbery
offenders. Unfortunately, the script is not very straightforward for novice users, but once
the user understands the general structure, it becomes relatively simple to adapt to a given
problem. First, I will use the subset function to reduce the full 2015 MICR file to victims
that were individual human beings and offenses that consisted of robbery.

> dta = read.csv("SAC MICR 2015 Total File.txt", header = TRUE)

> dta.rob = subset(dta, vic.type == "Individual" & offense == "Robbery")

> nrow(dta.rob) # Number of Observations

[1] 10946

Once this subsetting is complete, the remaining dataset consists of victim-offender dyads
for robbery offenses. At this point, the data frame will be converted to a data.table and
then the aggregation will begin. Detailed guides on using data.table are available here,
here, and here. Essentially, the strategy here consists of first creating an aggregated data
frame with the average of all numeric variables across each offender ID. Then, separate data
tables are created for each categorical variable desired, and then merged onto the aggregated
dataset. This process can be repeated until all required variables have been incorporated.

> library(data.table)

> #Convert to data.table

> dt = data.table(dta.rob)

> #Create aggregate file, with summaries for

> #number of victims, offender age, and victim age

> dt.agg = dt[, list(n.victims = .N, off.age = mean(off.age, na.rm = TRUE),

vic.age = mean(vic.age, na.rm = TRUE)), by = ofnd.id]

> #Create separate files with counts of

> #categorical variables, victim and offender sex

> dt.vsex = dt[, as.list(table(vic.sex)), by = ofnd.id];

> names(dt.vsex) = c("ofnd.id", "v.female", "v.male", "v.unknown")

> dt.osex = dt[, as.list(table(off.sex)), by = ofnd.id];

> names(dt.osex) = c("ofnd.id", "o.female", "o.male", "o.unknown")

> #Merge the categorical variables onto the aggregated data file

> dt.agg = merge(dt.agg, dt.vsex, by = "ofnd.id")

> dt.agg = merge(dt.agg, dt.osex, by = "ofnd.id")

> head(dt.agg)

ofnd.id n.victims off.age vic.age v.female v.male

1: 10000166_1 1 17 18 0 1

2: 10000211_1 1 17 29 0 1

3: 10000648_1 1 29 20 1 0

23

https://cran.r-project.org/web/packages/data.table/vignettes/datatable-intro.pdf
https://www.datacamp.com/community/tutorials/data-table-r-tutorial
https://s3.amazonaws.com/assets.datacamp.com/img/blog/data+table+cheat+sheet.pdf

3. Subsetting and Aggregating MICR Working with MICR in R

4: 10000657_1 1 28 22 1 0

5: 10000663_1 1 18 17 0 1

6: 10000663_2 1 17 17 0 1

v.unknown o.female o.male o.unknown

1: 0 0 1 0

2: 0 0 1 0

3: 0 0 1 0

4: 0 0 1 0

5: 0 0 1 0

6: 0 0 1 0

3.3.2 Counting Unique Units within Geographies

Another common task when analyzing MICR will be to summarize unique counts of units
within geographies, such as the number of aggravated assaults within counties. This can
be accomplished in a similar fashion to the example above, using data.table. However,
for this example I will use the dplyr package, to demonstrate an alternative. The following
describes creating a county-level dataset, counting the number of aggravated assault victims.
Similar to the example above, I will begin by subsetting the overall file to human victims
and aggravated assault offenses.

> dta.aa = subset(dta, vic.type == "Individual" &

offense == "Aggravated/Felonious Assault")

> nrow(dta.aa) # Number of Observations

[1] 30119

The dplyr package is a set of tools for manipulating data frames. One helpful feature is
the ability to ”chain” or ”pipe” functions into a sequence which (for instance), takes a given
data frame, selects particular variables, then filters particular rows, then groups output by
a given categorical variable, and then performs some manner of summary function. Guides
on using dplyr are available here and here. Specifically, the operator %>% is used to chain
sequential function calls. The example below, I will start with the aggravated assault data
frame (dta.aa), group the results by the county of the incident (inc.county), and will count
the number of unique victims within each county, using the length and unique functions
together.

24

https://cran.rstudio.com/web/packages/dplyr/vignettes/introduction.html
http://genomicsclass.github.io/book/pages/dplyr_tutorial.html

4. Moving Forward . . . Working with MICR in R

> library(dplyr)

> county.aa = dta.aa %>% #start with the dta.aa data.frame, then...

group_by(inc.county) %>% #group by county, then...

summarize(n.aggs = length(unique(victim.id))) #count unique victims

> head(county.aa)

A tibble: 6 2

inc.county n.aggs

<int> <int>

1 1 5

2 2 13

3 3 147

4 4 23

5 5 27

6 6 15

Further, it is possible to use additional filters to count the number of aggravated assaults
that meet a certain criteria, such as involving a firearm.

> county.gunaa = dta.aa %>% #start with the dta.aa data.frame, then...

filter(ofns.weptype == "Firearm") %>% #select gun offenses, then...

group_by(inc.county) %>% #group by county, then...

summarize(n.gunaggs = length(unique(victim.id))) #count unique victims

> head(county.gunaa)

A tibble: 6 2

inc.county n.gunaggs

<int> <int>

1 2 1

2 3 21

3 4 4

4 5 12

5 6 1

6 7 3

These datasets can then be linked to Census data, or any other data pertaining to the
geographic unit of analysis (e.g., city, ORI).

3.4 Moving Forward . . .

This tutorial has laid the groundwork for merging the MICR files into analyzable datasets
in the R statistical computing environment. Further steps in analysis may include merging
multiple years of data. This can be easily accomplished by running the cleaning script
(see the Appendix) on the data files for each year, and then using a simple merge function.
For instance, combined.data = merge(data.2014, data.2015, all.x = TRUE, all.y =

TRUE) would accomplish such a task. However, it is recommended that the individual years

25

4. Moving Forward . . . Working with MICR in R

be subsetted to only the necessary rows/structure, since the overall files are quite large on
their own.

One point to consider is variation in reporting agencies in multiple years of data. Al-
though MICR is fortunate to have a high participation rate among law enforcement agencies,
there may be slight variations in which agencies report or do not report from year to year.
One means of checking for this variation is to use the setdiff function. This function will
identify the elements of one vector which do not appear in another. To this extent, one can
create vectors of the unique ORI numbers reporting data in a given year and then compare
them using the setdiff function. Just to demonstrate,

> set.a = c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

> set.b = c(2, 4, 6, 8, 10)

> setdiff(set.a, set.b) # The elements of A that are not in B

[1] 1 3 5 7 9

The Appendix includes the entire code for cleaning, recoding, and merging the MICR
files. Each year the variables seem to change very slightly, so please check the individual
year files for consistency in case running the script produces any errors.

3.4.1 Building on this Tutorial

One of the strengths of using an open-source statistical computing platform is the vibrancy
of its community. R users benefit from the experiences and advice of others tacking similar
problems in different contexts. To this extent, this guide was written in the spirit of a
living document that would continue to grow with new advice as researchers continue to
work with incident-based data in R. If you believe you have helpful advice for working
with MICR/NIBRS data in R that other users could potentially benefit, please contact the
Michigan Justice Statistics Center so that this guide can continue to grow.

26

http://cj.msu.edu/programs/michigan-justice-statistics-center/

4 Appendix

4.1 Annotated .R Script for Cleaning and Merging MICR

> ###Workspace Setup

>

> library(plyr) ; library(dplyr) ; library(lubridate); library(car)

> ###Main Administrative File - Date/Time/Location

>

> admin = read.csv("MICR1 2015.txt", header = TRUE)

> #698083 Records, 698083 Unique MIC1 Numbers

>

> #Date and Time Recodes

>

> admin$MIC1_INC_DATE = as.character(admin$MIC1_INC_DATE)

> admin$MIC1_INC_DATE = ifelse(nchar(admin$MIC1_INC_DATE) < 6,

paste0("0", admin$MIC1_INC_DATE),

admin$MIC1_INC_DATE)

> admin$inc.date = as.Date(admin$MIC1_INC_DATE, format = "%m%d%y")

> admin$inc.month = month(admin$inc.date, abbr = FALSE)

> admin$inc.hour = ifelse(admin$MIC1_HOUR_OCCUR >= 0 &

admin$MIC1_HOUR_OCCUR <= 23,

admin$MIC1_HOUR_OCCUR, "NA")

> admin$inc.hour = factor(admin$inc.hour,

levels = c("0", "1", "2", "3", "4", "5", "6",

"7", "8", "9", "10", "11", "12",

"13", "14", "15", "16", "17", "18",

"19", "20", "21", "22", "23"))

> #6.2% Missing the Hour of Occurrence

>

> #MIC1_COUNTY Indicator

>

> admin$inc.county = factor(admin$MIC1_COUNTY)

> #Geocodes

>

> addrs = read.csv("MICR ADDRESS 2015.txt", header = TRUE)

> #364193 Records, 363918 Unique MIC1 Numbers

>

> addrs$lon = addrs$LONGITUDE

27

1. Annotated .R Script for Cleaning and Merging MICR Appendix

> addrs$lat = addrs$LATITUDE

> addrs$lon[addrs$lon < -90.418611 | addrs$lon > -82.122778] = NA

> addrs$lat[addrs$lat < 41.696111 | addrs$lat > 48.305833] = NA

> addrs$missing.geo = 0

> addrs$missing.geo[is.na(addrs$lon) | is.na(addrs$lat)] = 1

> #Invalid geocodes for 0.9% of address records

>

> ###Victim and Victim Offender Relationship File

>

> victim = read.csv("MICR5 2015.txt", header = TRUE)

> #699921 Records, #650257 Unique MIC1 Numbers

>

> victim$vic.ethnicity = recode(victim$MICR5_ETHNICITY,

"'A' = 'Arab' ; 'H' = 'Hispanic' ; 'O' = 'Other' ;

'U' = 'Unknown' ; else = NA")

> victim$vic.race = recode(victim$MICR5_RACE,

"'A' = 'Asian/Pacific Islander' ; 'B' = 'African American' ;

'I' = 'American Indian' ; 'W' = 'White' ; 'U' = 'Unknown' ;

else = NA")

> victim$vic.reside = recode(victim$MICR5_RESIDENT,

"'C' = 'Same MIC1_COUNTY' ;

'R' = 'Same Community' ;

'S' = 'Same State' ; 'O' = 'Out of State' ;

'U' = 'Unknown' ; else = NA")

> victim$vic.sex = recode(victim$MICR5_SEX,

"'F' = 'Female' ; 'M' = 'Male' ;

'U' = 'Unknown' ; else = NA")

> victim$vic.female = recode(victim$vic.sex,

"'Female' = 1 ; 'Male' = 0 ; else = NA")

> victim$vic.type = recode(victim$MICR5_TYPE,

"'B' = 'Business' ; 'F' = 'Financial Institution' ;

'G' = 'Government' ;

'I' = 'Individual' ; 'O' = 'Other' ;

'P' = 'Police Officer' ; 'R' = 'Religious Organization' ;

'S' = 'Society/Public' ; 'U' = 'Unknown' ; else = NA")

> victim$vic.individual = recode(victim$vic.type,

"'Individual' = 1 ; NA = NA ; else = 0")

> victim$vic.injury = recode(victim$MICR5_INJURY,

"'B' = 'Broken Bones' ; 'I' = 'Possible Internal Injury' ;

'F' = 'Fatal' ; 'L' = 'Severe Laceration' ;

'M' = 'Apparent Minor Injury' ; 'N' = 'None' ;

'O' = 'Other Major Injury' ; 'T' = 'Loss of Teeth' ;

'U' = 'Unconscious' ;

else = NA")

> victim$vic.inj.any = recode(victim$MICR5_INJURY,

"'N' = 'No Injury' ;

c('B', 'I', 'L', 'M', 'O', 'T', 'U') = 'Any Injury' ;

28

1. Annotated .R Script for Cleaning and Merging MICR Appendix

'F' = 'Fatal' ; else = NA")

> victim$vic.inj.sev = recode(victim$MICR5_INJURY,

"'N' = 'No Injury' ; c('M', 'O') = 'Minor Injury' ;

c('B', 'L', 'T', 'U', 'I') = 'Severe Injury' ;

'F' = 'Fatal' ; else = NA")

> victim$MICR5_VICTIM_AGE = as.character(victim$MICR5_VICTIM_AGE)

> victim$vic.age = as.numeric(victim$MICR5_VICTIM_AGE)

> victim$ofns.circumstance = recode(victim$MICR5_CIRCUMSTAN,

"1 = 'Argument' ; 2 = 'Assault on LE' ;

3 = 'Drug Dealing' ; 4 = 'Gangland' ;

5 = 'Juvenile Gang' ; 6 = 'Lovers Quarrel' ;

7 = 'Mercy Killing' ; 8 = 'Other Felony Involved' ;

9 = 'Other Circumstances' ;

10 = 'Unknown Circumstances' ;

20 = 'Criminal Killed by Citizen' ;

21 = 'Criminal Killed by Citizen' ;

33 = 'Negligent Weapon Handling' ;

34 = 'Other Negligent Killing' ; else = NA")

> victim$justify = recode(victim$MICR5_JUSTIFY,

"c(1, 2) = 'Police Kill Attacker' ;

3 = 'Criminal Attack Civilian' ;

5 = 'Criminal Killed During Commission of Crime'")

> victim$ofns.domvio = recode(victim$MICR5_DOM_VIOLENCE,

"'Y' = 'Domestic Violence' ; 'N' = 'Not DV' ; else = NA")

> ##VOFNS Table

>

> vofns = read.csv("MICR VOFNS 2015.txt", header = TRUE)

> #740546 records, 650257 unique MIC1 Numbers

> vor = read.csv("MICR VOR 2015.txt", header = TRUE)

> #244266 Records, 191160 unique MIC1 Numbers

>

> vor$vo.rel.known = recode(vor$VOR_VOREL,

"c(NA, 99) = 'Unknown VO Rel' ; else = 'Known VO Rel'")

> vor$vor.cat = recode(vor$VOR_VOREL,

"c(1, 2, 24, 26) = 'Current Intimate Partner' ;

c(13, 27, 32) = 'Former Intimate Partner' ;

c(3, 4, 5, 6, 7) = 'Blood Relative' ;

c(8, 9, 10, 11, 12) = 'Non-Blood Relative' ;

c(20, 21, 22, 23, 25, 28, 29, 33, 34) = 'Acquaintance' ;

c(30, 31) = 'Other Known' ;

98 = 'Stranger' ; 99 = 'Unknown' ; else = NA")

> vor$vor.cat = factor(vor$vor.cat)

> ###Law Enforcement Officers Killed or Assaulted

>

> leoka = read.csv("MICR LEOKA 2015.txt", header = TRUE)

> ###Offender File

>

29

1. Annotated .R Script for Cleaning and Merging MICR Appendix

> ofnd = read.csv("MICR3 2015.txt", header = TRUE)

> #588631 Records, 504528 Unique MIC1

>

> ofnd$off.race = recode(ofnd$MICR3_RACE,

"'A' = 'Asian/Pacific Islander' ; 'B' = 'African American' ;

'I' = 'American Indian' ; 'W' = 'White' ;

'U' = 'Unknown' ; else = NA")

> ofnd$off.sex = recode(ofnd$MICR3_SEX,

"'F' = 'Female' ; 'M' = 'Male' ; 'U' = 'Unknown' ; else = NA")

> ofnd$off.female = recode(ofnd$off.sex,

"'Female' = 1 ; 'Male' = 0 ; else = NA")

> ofnd$off.age = as.numeric(ofnd$MICR3_AGE)

> ###Offender Used Table

>

> oused = read.csv("MICR OUSED 2015.txt", header = TRUE)

> #748769 records, 682972 unique MIC1 Numbers

>

> oused$off.used = recode(oused$OUSED_USED,

"'A' = 'Alcohol' ; 'C' = 'Computer Equipment' ;

'D' = 'Drugs/Narcotics' ;

'N' = 'Not Applicable/None' ; else = NA")

> ofnd$VOR_OFFENDERNO = ofnd$MICR3_OFFENDERNO

> ofnd$ofnd.id = with(ofnd, paste0(MIC1_NUMBER, "_", VOR_OFFENDERNO))

> ofnd = arrange(ofnd, MIC1_NUMBER, VOR_OFFENDERNO)

> ###Offense Table

>

> act = read.csv("MICR OFFNS 2015.txt", header = TRUE)

> #758552 Records, 697904 Unique MIC1 Numbers

>

> act$offense.id = with(act, paste0(MIC1_NUMBER, "_", OFFNS_OFFENSE_CO))

> act$ofns.attempt = recode(act$OFFNS_ATTEMPT,

"'A' = 1 ; 'C' = 0 ; else = NA")

> act$ofns.weapon = recode(act$OFFNS_WEAPON,

"'00' = 'Unarmed' ; '11' = 'Firearm' ;

'11A' = 'Automatic Firearm' ;

'12' = 'Handgun' ; '12A' = 'Automatic Handgun' ;

'13' = 'Rifle' ; '13A' = 'Automatic Rifle' ;

'14' = 'Shotgun' ; '14A' = 'Automatic Shotgun' ;

'15' = 'Other Firearm' ; '15A' = 'Other Automatic Firearm' ;

'20' = 'Knife/Blade' ; '30' = 'Blunt Object' ;

'35' = 'Motor Vehicle' ; '40' = 'Personal Weapons' ;

'50' = 'Poison' ; '60' = 'Explosives' ;

'65' = 'Fire/Incendiary Devices' ; '70' = 'Drugs/Narcotics' ;

'85' = 'Asphyxiation' ; '88' = 'Other' ;

'99' = 'Unknown' ; else = NA")

> act$ofns.weptype = recode(act$OFFNS_WEAPON,

"c('00', '40') = 'Unarmed' ;

30

1. Annotated .R Script for Cleaning and Merging MICR Appendix

c('11', '11A', '12', '12A', '13', '13A', '14', '14A',

'15', '15A') = 'Firearm' ;

c('20', '30') = 'Melee Weapon' ;

c('35', '50', '60', '65', '70', '85', '88') = 'Other Weapons' ;

else = NA")

> act$ofns.biastype = recode(act$OFFNS_BIAS,

"0 = 'None' ; 11 = 'Anti-White' ; 12 = 'Anti-Black' ;

13 = 'Anti-Amer Indian' ; 14 = 'Anti-Asian' ;

15 = 'Anti-MultiRace' ; 21 = 'Anti-Jewish' ;

22 = 'Anti-Catholic' ; 23 = 'Anti-Protestant' ;

24 = 'Anti-Islamic' ; 25 = 'Anti-Other Religion' ;

26 = 'Anti-MultiRelig' ; 27 = 'Anti-Atheism' ;

32 = 'Anti-Hispanic' ;

33 = 'Anti-Other Ethnicity' ; 41 = 'Anti-Male Homosexual' ;

42 = 'Anti-Female Homosexual' ; 43 = 'Anti-Homosexual' ;

44 = 'Anti-Heterosexual' ; 45 = 'Anti-Bisexual' ;

51 = 'Anti-Female' ; 52 = 'Anti-Male' ;

61 = 'Anti-PhysDisability' ;

62 = 'Anti-MentalDisab' ; 88 = 'Other Bias' ;

99 = 'Unknown' ; else = NA")

> act$ofns.biascat = recode(act$OFFNS_BIAS,

"0 = 'None' ; c(11, 12, 13, 14, 15, 32, 33) = 'Racial/Ethnic' ;

c(21, 22, 23, 24, 25, 26, 27) = 'Religious' ;

c(41, 42, 43, 44, 45) = 'Sexual Orientation' ;

c(51, 52) = 'Gender' ; c(61, 62) = 'Disability' ;

88 = 'Other' ; 99 = 'Unknown' ; else = NA")

> act$ofns.location = recode(act$OFFNS_LOCATION,

"20 = 'Residence' ; c(2, 3, 5, 7, 8, 12, 14, 17, 19,

21, 23, 24, 34, 36, 37, 38, 39, 41,

44, 46, 55) = 'Business' ;

c(1, 4, 9, 11, 15, 31, 32, 45, 48,

49, 54) = 'Govt/School/Transport' ;

c(6, 10, 13, 16, 18, 33, 35, 40, 50,

56) = 'Public - Outdoors' ;

88 = 'Other' ; 99 = 'Unknown' ; else = NA")

> ###ATYPE Table

>

> atype = read.csv("MICR ATYPE 2015.txt", header = TRUE)

> #143045 Records, 130733 Unique MIC1 Numbers

>

> atype$act.type = recode(atype$ATYPE_TYPE,

"'B' = 'Buying/Receiving' ;

'c' = 'Cultivating/Manufacturing/Publishing' ;

'D' = 'Distributing/Selling' ; 'E' = 'Exploiting Children' ;

'G' = 'Other Gang' ;

'J' = 'Juvenile Gang' ; 'N' = 'None/Unknown' ;

'O' = 'Operating/Promoting/Assisting' ;

31

1. Annotated .R Script for Cleaning and Merging MICR Appendix

'P' = 'Possessing/Concealing' ;

'T' = 'Transporting/Transmitting/Importing' ;

'U' = 'Using/Consuming' ; else = NA")

> ###Arrest File

>

> arrest = read.csv("MICR7 2015.txt", header = TRUE)

> #260482 records, 236682 unique MIC1 Numbers

>

> arrest$arr.type = recode(arrest$MICR7_ARREST_TYP,

"'O' = 'On-View' ; 'S' = 'Cited - No Custody' ;

'T' = 'Custody - Previous Warrant'")

> arrest$arr.clearance = recode(arrest$MICR7_CLEARANCE,

"'Y' = 'Yes' ; 'N' = 'Previously Cleared' ; else = NA")

> arrest$dispo.und18 = recode(arrest$MICR7_DISPOSITIO,

"'H' = 'Handled within Dept.' ;

'R' = 'Referred to Other Authorities'")

> arrest$multi.arr = recode(arrest$MICR7_MULTI_ARR,

"c('C', 'M') = 'Person Arr Multi Incidents' ;

'N' = 'Person Arr One Incident'")

> arrest$arr.race = recode(arrest$MICR7_RACE,

"'A' = 'Asian/Pacific Islander' ; 'B' = 'African American' ;

'I' = 'American Indian' ; 'W' = 'White' ; 'U' = 'Unknown' ;

else = NA")

> arrest$arr.ethnicity = recode(arrest$MICR7_ETHNIC,

"'A' = 'Arab' ; 'H' = 'Hispanic' ; 'O' = 'Other' ;

'U' = 'Unknown' ; else = NA")

> arrest$arr.sex = recode(arrest$MICR7_SEX,

"'F' = 'Female' ; 'M' = 'Male' ; 'U' = 'Unknown' ; else = NA")

> arrest$arr.female = recode(arrest$arr.sex,

"'Female' = 1 ; 'Male' = 0 ; else = NA")

> arrest$arr.age = as.numeric(arrest$MICR7_AGE)

> arrest$arr.reside = recode(arrest$MICR7_RESIDENCE,

"'C' = 'Same MIC1_COUNTY' ; 'R' = 'Same Community' ;

'S' = 'Same State' ; 'O' = 'Out of State' ;

'U' = 'Unknown' ; else = NA")

> arrest$VOR_OFFENDERNO = arrest$MICR7_ARRESTNO

> ###Arrestee Armed

>

> armed = read.csv("MICR ARMED 2015.txt", header = TRUE)

> #255316 Records, 236682 Records

>

> armed$arr.weapon = recode(armed$ARMED_ARREST_ARM,

"'00' = 'Unarmed' ; '11' = 'Firearm' ;

'11A' = 'Automatic Firearm' ;

'12' = 'Handgun' ; '12A' = 'Automatic Handgun' ;

'13' = 'Rifle' ; '13A' = 'Automatic Rifle' ;

'14' = 'Shotgun' ; '14A' = 'Automatic Shotgun' ;

32

1. Annotated .R Script for Cleaning and Merging MICR Appendix

'15' = 'Other Firearm' ; '15A' = 'Other Automatic Firearm' ;

'20' = 'Knife/Blade' ; '30' = 'Blunt Object' ;

'35' = 'Motor Vehicle' ; '40' = 'Personal Weapons' ;

'50' = 'Poison' ; '60' = 'Explosives' ;

'65' = 'Fire/Incendiary Devices' ; '70' = 'Drugs/Narcotics' ;

'85' = 'Asphyxiation' ; '88' = 'Other' ;

'99' = 'Unknown' ; else = NA")

> ###Initial Merging Attempt

>

> #Link Addresses to Incidents

>

> admin = arrange(admin, MIC1_NUMBER)

> addrs = arrange(addrs, MIC1_NUMBER)

> admin.addrs = merge(admin, addrs, by = "MIC1_NUMBER", all.x = TRUE)

> rm(admin, addrs) #Clean Up Workspace

> #Missing Geocodes by MIC1_COUNTY

>

> m = admin.addrs %>%

group_by(inc.county) %>%

summarize(N = n(),

Missing.Total = sum(missing.geo, na.rm = TRUE),

Missing.PCT = sum(missing.geo, na.rm = TRUE)/n())

> summary(m$Missing.PCT) #Mean = 0.1%, Median = 0.0%, Max = 3.3%

> rm(m)

> #Link VOR and VOFNS to Victims

>

> victim$victim.id = with(victim, paste0(MIC1_NUMBER, "_", MICR5_VICTIMNO))

> vofns$victim.id = with(vofns, paste0(MIC1_NUMBER, "_", VOFNS_VICTIMNO))

> vor$victim.id = with(vor, paste0(MIC1_NUMBER, "_", VOR_VICTIMNO))

> vor$ofnd.id = with(vor, paste0(MIC1_NUMBER, "_", VOR_OFFENDERNO))

> victim = arrange(victim, MIC1_NUMBER, victim.id)

> vofns = arrange(vofns, MIC1_NUMBER, victim.id)

> vor = arrange(vor, MIC1_NUMBER, victim.id, ofnd.id)

> setdiff(vofns$victim.id, victim$victim.id)

> # All VOFNS Victim IDs in the Victim File

> setdiff(vor$victim.id, victim$victim.id)

> # All VOR Victim IDs in the Victim File

> victim.vofns = merge(victim, vofns, by = c("MIC1_NUMBER", "victim.id"),

all.x = TRUE, all.y = TRUE)

> vic.vor = merge(victim.vofns, vor, by = c("MIC1_NUMBER", "victim.id"),

all.x = TRUE, all.y = TRUE)

> #773390 Records, 650257 Unique MIC1 Numbers

> vic.vor$offense.id = with(vic.vor, paste0(MIC1_NUMBER, "_", VOFNS_OFFENSE_CO))

> rm(victim, vofns, vor, victim.vofns)

> #Link OUSED to Offenders

>

> ofnd$ofnd.id = with(ofnd, paste0(MIC1_NUMBER, "_", MICR3_OFFENDERNO))

33

1. Annotated .R Script for Cleaning and Merging MICR Appendix

> oused$offense.id = with(oused, paste0(MIC1_NUMBER, "_", OUSED_OFFENSE_CO))

> ofnd = arrange(ofnd, MIC1_NUMBER)

> oused = arrange(oused, MIC1_NUMBER)

> length(setdiff(ofnd$MIC1_NUMBER, oused$MIC1_NUMBER))

> ofnd.oused = merge(ofnd, oused, by = "MIC1_NUMBER",

all.x = TRUE, all.y = TRUE)

> #867438 Records, 699332 Unique MIC1 Numbers

> ofnd.oused$MIC1_ORIG_YEAR = 2015L

> rm(ofnd, oused)

> #Link Activity Type to Offenses

>

> act$offense.id = with(act, paste0(MIC1_NUMBER, "_", OFFNS_OFFENSE_CO))

> atype$offense.id = with(atype, paste0(MIC1_NUMBER, "_", ATYPE_OFFENSE_CO))

> act = arrange(act, MIC1_NUMBER, offense.id)

> atype = arrange(atype, MIC1_NUMBER, offense.id)

> length(setdiff(atype$offense.id, act$offense.id))

> # All atype offense numbers in act file

> act.atype = merge(act, atype, by = c("MIC1_NUMBER", "offense.id"),

all.x = TRUE, all.y = TRUE)

> #762188 Records, 697904 Unique MIC1 Numbers

> rm(act, atype)

> #Link Arrests to Offenders

>

> arrest$ofnd.id = with(arrest, paste0(MIC1_NUMBER, "_", MICR7_ARRESTNO))

> armed$ofnd.id = with(armed, paste0(MIC1_NUMBER, "_", ARMED_ARRESTNO))

> arrest = arrange(arrest, MIC1_NUMBER, ofnd.id)

> armed = arrange(armed, MIC1_NUMBER, ofnd.id)

> length(setdiff(arrest$ofnd.id, armed$ofnd.id))

> arr = merge(arrest, armed, by = c("MIC1_NUMBER", "ofnd.id"),

all.x = TRUE, all.y = TRUE)

> #264222 Records, 239808 Unique MIC1 Numbers

> rm(arrest, armed)

> ofnd.oused = arrange(ofnd.oused, MIC1_NUMBER, ofnd.id)

> arr = arrange(arr, MIC1_NUMBER, ofnd.id)

> length(setdiff(ofnd.oused$ofnd.id, arr$ofnd.id))

> ofnd.arr = merge(ofnd.oused, subset(arr, select = -MIC1_ORIG_YEAR),

by = c("MIC1_NUMBER", "ofnd.id"), all.x = TRUE, all.y = TRUE)

> #876683 Records, 702341 Unique MIC1 Numbers, 597534 Unique Offender IDs

> ofnd.arr$MIC1_ORIG_YEAR = 2015

> rm(ofnd.oused, arr)

> #Link Offenders and Arrests to Victims and VOR

>

> vic.vor = arrange(vic.vor, MIC1_NUMBER, victim.id, ofnd.id, offense.id)

> ofnd.arr = arrange(ofnd.arr, MIC1_NUMBER, ofnd.id, offense.id)

> length(setdiff(vic.vor$ofnd.id, ofnd.arr$ofnd.id))

> # Zero vic.vor offender IDs that are not in the Offender arrest file

> vic.ofnd = merge(vic.vor, ofnd.arr,

34

1. Annotated .R Script for Cleaning and Merging MICR Appendix

by = c("MIC1_NUMBER", "ofnd.id", "offense.id"),

all.x = TRUE, all.y = TRUE)

> vic.ofnd = arrange(vic.ofnd, MIC1_NUMBER, victim.id, ofnd.id, offense.id)

> #1,343,338 Records, 706649 Unique MIC1 Numbers,

> #690237 Unique Victims, 710698 Unique Offenders

> vic.ofnd$MIC1_ORIG_YEAR = 2015

> rm(vic.vor, ofnd.arr)

> #Link Offenses to Victims and Offenders

>

> act.atype = arrange(act.atype, MIC1_NUMBER, offense.id)

> length(setdiff(act.atype$offense.id, vic.ofnd$offense.id))

> triads = merge(vic.ofnd, act.atype,

by = c("MIC1_NUMBER", "offense.id"), all.x = TRUE, all.y = TRUE)

> triads = arrange(triads, MIC1_NUMBER, victim.id, ofnd.id, offense.id)

> triads$MIC1_ORIG_YEAR = 2015

> #Each row represents a victim x offender x offense triad

> #1,294,000 Triads across 744,104 Incidents

> rm(vic.ofnd, act.atype)

> #Link Victim x Offender x Offense Traids to Administrative File

>

> admin.addrs = arrange(admin.addrs, MIC1_NUMBER)

> length(setdiff(admin.addrs$MIC1_NUMBER, triads$MIC1_NUMBER))

> #178 Admin Address MIC1 NUmbers not in the Triads file

> dta = merge(triads, subset(admin.addrs, select = -MIC1_ORIG_YEAR),

by = "MIC1_NUMBER", all.x = TRUE, all.y = TRUE)

> dta = arrange(dta, MIC1_NUMBER, victim.id, ofnd.id, offense.id)

> dta$MIC1_ORIG_YEAR = 2015

> #1,362,433 Records, 721808 Unique MIC1 Numbers,

> #690237 Victims, 710698 Offenders, 762934 Offenses

> rm(triads, admin.addrs)

> #Save to CSV

>

> dta = select(dta, MIC1_ORIG_YEAR, MIC1_NUMBER, offense.id, ofnd.id, victim.id,

MICR5_NUMBER, vic.ethnicity, vic.race, vic.sex, vic.female, vic.age,

vic.reside, vic.type, vic.individual, vic.injury, vic.inj.any,

vic.inj.sev, ofns.circumstance, justify, ofns.domvio, VOFNS_NUMBER,

VOFNS_OFFENSE_CO, VOFNS_VICTIMNO, VOR_NUMBER, VOR_OFFENDERNO,

VOR_VICTIMNO, vo.rel.known, vor.cat, MICR3_NUMBER, off.race, off.sex,

off.female, off.age, OUSED_NUMBER, OUSED_OFFENSE_CO, off.used,

MICR7_ARRESTNO, MICR7_CHARGE, arr.type, arr.clearance, dispo.und18,

multi.arr, arr.race, arr.ethnicity, arr.sex, arr.female, arr.age,

arr.reside, ARMED_NUMBER, ARMED_ARRESTNO, arr.weapon, OFFNS_NUMBER,

OFFNS_OFFENSE_CO, ofns.attempt, ofns.weapon, ofns.weptype,

ofns.biastype, ofns.biascat, ofns.location, ATYPE_NUMBER,

ATYPE_OFFENSE_CO, act.type, MIC1_ASSIST_ORI, MIC1_DATE_IND,

MIC1_GEO_CODE, MIC1_ORI, MIC1_CITY_TWP, MIC1_CLEAR_DATE,

MIC1_EXCEPT_CLE, inc.date, inc.month,

35

1. Annotated .R Script for Cleaning and Merging MICR Appendix

inc.hour, inc.county, ZIP, lon, lat, missing.geo)

> dta = within(dta, {

offense = NA

offense[OFFNS_OFFENSE_CO == 14000] = "Abortion"

offense[OFFNS_OFFENSE_CO == 13002] = "Aggravated/Felonious Assault"

offense[OFFNS_OFFENSE_CO == 60000] = "Antitrust"

offense[OFFNS_OFFENSE_CO == 20000] = "Arson"

offense[OFFNS_OFFENSE_CO == 51000] = "Bribery"

offense[OFFNS_OFFENSE_CO == 22002] = "Burglary Entry W/Out Force (Intent)"

offense[OFFNS_OFFENSE_CO == 22001] = "Burglary Forced Entry"

offense[OFFNS_OFFENSE_CO == 22003] = "Burglary Unlawful Entry (No Intent)"

offense[OFFNS_OFFENSE_CO == 56000] = "Civil Rights"

offense[OFFNS_OFFENSE_CO == 40002] =

"Commercialized Sex - Assisting/Promoting Prostitution"

offense[OFFNS_OFFENSE_CO == 40001] = "Commercialized Sex - Prostitution"

offense[OFFNS_OFFENSE_CO == 62000] = "Conservation"

offense[OFFNS_OFFENSE_CO == 77000] = "Conspiracy"

offense[OFFNS_OFFENSE_CO == 29000] = "Damage to Property"

offense[OFFNS_OFFENSE_CO == 53001] = "Disorderly Conduct"

offense[OFFNS_OFFENSE_CO == 42000] = "Drunkenness"

offense[OFFNS_OFFENSE_CO == 59000] = "Election Laws"

offense[OFFNS_OFFENSE_CO == 27000] = "Embezzlement"

offense[OFFNS_OFFENSE_CO == 49000] = "Escape/Flight"

offense[OFFNS_OFFENSE_CO == 21000] = "Extortion"

offense[OFFNS_OFFENSE_CO == 38001] = "Family - Abuse/Neglect Nonviolent"

offense[OFFNS_OFFENSE_CO == 38002] = "Family - Nonsupport"

offense[OFFNS_OFFENSE_CO == 38003] = "Family - Other"

offense[OFFNS_OFFENSE_CO == 25000] = "Forgery/Counterfeiting"

offense[OFFNS_OFFENSE_CO == 26006] = "Fraud - Bad Checks"

offense[OFFNS_OFFENSE_CO == 26002] = "Fraud - Credit Card/ATM"

offense[OFFNS_OFFENSE_CO == 26001] =

"Fraud - False Pretense/Swindle/Confidence Game"

offense[OFFNS_OFFENSE_CO == 26003] = "Fraud - Impersonation"

offense[OFFNS_OFFENSE_CO == 26004] = "Fraud - Welfare"

offense[OFFNS_OFFENSE_CO == 26005] = "Fraud - Wire"

offense[OFFNS_OFFENSE_CO == 39001] = "Gambling - Betting/Wagering"

offense[OFFNS_OFFENSE_CO == 39003] = "Gambling - Equipment Violations"

offense[OFFNS_OFFENSE_CO == 39002] = "Gambling - Operating/Promoting/Assisting"

offense[OFFNS_OFFENSE_CO == 39004] = "Gambling - Sports Tampering"

offense[OFFNS_OFFENSE_CO == 55000] = "Health and Safety"

offense[OFFNS_OFFENSE_CO == 54001] = "Hit and Run Motor Vehicle Accident"

offense[OFFNS_OFFENSE_CO == 64001] = "Human Trafficking, Comm. Sex Acts"

offense[OFFNS_OFFENSE_CO == 64002] = "Human Trafficking, Inv. Servitude"

offense[OFFNS_OFFENSE_CO == 3000] = "Immigration"

offense[OFFNS_OFFENSE_CO == 13003] = "Intimidation/Stalking"

offense[OFFNS_OFFENSE_CO == 57002] = "Invasion of Privacy Other"

offense[OFFNS_OFFENSE_CO == 9004] = "Justifiable Homicide"

36

1. Annotated .R Script for Cleaning and Merging MICR Appendix

offense[OFFNS_OFFENSE_CO == 70000] = "Juvenile Runaway"

offense[OFFNS_OFFENSE_CO == 10001] = "Kidnapping/Abduction"

offense[OFFNS_OFFENSE_CO == 23007] = "Larceny - Other"

offense[OFFNS_OFFENSE_CO == 23001] = "Larceny - Pocket Picking"

offense[OFFNS_OFFENSE_CO == 23002] = "Larceny - Purse Snatching"

offense[OFFNS_OFFENSE_CO == 23003] = "Larceny - Theft from Building"

offense[OFFNS_OFFENSE_CO == 23004] =

"Larceny - Theft from Coin Operated Machine/Device"

offense[OFFNS_OFFENSE_CO == 23005] = "Larceny - Theft from Motor Vehicle"

offense[OFFNS_OFFENSE_CO == 23006] =

"Larceny - Theft of Motor Vehicle Parts/Accessories"

offense[OFFNS_OFFENSE_CO == 41001] = "Liquor License - Establishment"

offense[OFFNS_OFFENSE_CO == 41002] = "Liquor Violations - Other"

offense[OFFNS_OFFENSE_CO == 2000] = "Military"

offense[OFFNS_OFFENSE_CO == 73000] = "Miscellaneous Criminal Offense"

offense[OFFNS_OFFENSE_CO == 24002] = "Motor Vehicle as Stolen Property"

offense[OFFNS_OFFENSE_CO == 24003] = "Motor Vehicle Fraud"

offense[OFFNS_OFFENSE_CO == 24001] = "Motor Vehicle Theft"

offense[OFFNS_OFFENSE_CO == 9001] = "Murder/Non-negligent Manslaughter"

offense[OFFNS_OFFENSE_CO == 35002] = "Narcotic Equipment Violations"

offense[OFFNS_OFFENSE_CO == 9002] = "Negligent Homicide/Manslaughter"

offense[OFFNS_OFFENSE_CO == 9003] =

"Negligent Homicide - Vehicle/Boat/Snowmobile/ORV"

offense[OFFNS_OFFENSE_CO == 13001] = "Non-aggravated Assault"

offense[OFFNS_OFFENSE_CO == 37000] = "Obscenity"

offense[OFFNS_OFFENSE_CO == 50000] = "Obstructing Justice"

offense[OFFNS_OFFENSE_CO == 48000] = "Obstructing Police"

offense[OFFNS_OFFENSE_CO == 54002] =

"Operating Under Influence of Liquor (OUIL) or Drugs (OUID)"

offense[OFFNS_OFFENSE_CO == 30004] = "Organized Retail Fraud"

offense[OFFNS_OFFENSE_CO == 10002] = "Parental Kidnapping"

offense[OFFNS_OFFENSE_CO == 36003] = "Peeping Tom"

offense[OFFNS_OFFENSE_CO == 22004] = "Possession of Burglary Tools"

offense[OFFNS_OFFENSE_CO == 53002] = "Public Peace - Other"

offense[OFFNS_OFFENSE_CO == 40003] = "Purchasing Prostitution"

offense[OFFNS_OFFENSE_CO == 28000] = "Recovery of Stolen Property"

offense[OFFNS_OFFENSE_CO == 30001] = "Retail Fraud - Misrepresentation"

offense[OFFNS_OFFENSE_CO == 30003] = "Retail Fraud - Refund/Exchange"

offense[OFFNS_OFFENSE_CO == 30002] = "Retail Fraud - Theft"

offense[OFFNS_OFFENSE_CO == 12000] = "Robbery"

offense[OFFNS_OFFENSE_CO == 36004] = "Sex Offense - Other"

offense[OFFNS_OFFENSE_CO == 11007] = "Sexual Contact Forcible CSC2"

offense[OFFNS_OFFENSE_CO == 11008] = "Sexual Contact Forcible CSC4"

offense[OFFNS_OFFENSE_CO == 36001] = "Sexual Penetration Non-forcible"

offense[OFFNS_OFFENSE_CO == 36002] = "Sexual Penetration Non-forcible Other"

offense[OFFNS_OFFENSE_CO == 11005] = "Sexual Penetration Object CSC1"

offense[OFFNS_OFFENSE_CO == 11006] = "Sexual Penetration Object CSC3"

37

1. Annotated .R Script for Cleaning and Merging MICR Appendix

offense[OFFNS_OFFENSE_CO == 11003] = "Sexual Penetration Oral/Anal CSC1"

offense[OFFNS_OFFENSE_CO == 11004] = "Sexual Penetration Oral/Anal CSC3"

offense[OFFNS_OFFENSE_CO == 11001] = "Sexual Penetration Penis/Vagina CSC1"

offense[OFFNS_OFFENSE_CO == 11002] = "Sexual Penetration Penis/Vagina CSC3"

offense[OFFNS_OFFENSE_CO == 58000] = "Smuggling"

offense[OFFNS_OFFENSE_CO == 75000] = "Solicitation"

offense[OFFNS_OFFENSE_CO == 1000] = "Sovereignty"

offense[OFFNS_OFFENSE_CO == 61000] = "Tax/Revenue"

offense[OFFNS_OFFENSE_CO == 57001] = "Trespass"

offense[OFFNS_OFFENSE_CO == 63000] = "Vagrancy"

offense[OFFNS_OFFENSE_CO == 35001] = "Violation of Controlled Substance"

offense[OFFNS_OFFENSE_CO == 52001] = "Weapons Offense - Concealed"

offense[OFFNS_OFFENSE_CO == 52002] = "Weapons Offense - Explosives"

offense[OFFNS_OFFENSE_CO == 52003] = "Weapons Offense - Other"

})

> write.csv(dta, "SAC MICR 2015 Total File.txt")

38

	Preface
	A Gentle Introduction to R
	Getting Started with R
	Installing R
	Installing and Loading R Packages
	Setting up R Script (.R Files)

	R as an Object-Oriented Programming Language
	Loading and Manipulating Data
	Working with Data Frame Variables
	Data Management and Manipulation in R
	Subsetting (Indexing) Data
	Creating and Recoding Variables
	Arranging and Merging

	Moving Forward …

	Working with MICR in R
	Understanding the MICR File Structure
	Linking the MICR Files
	Subsetting and Aggregating MICR
	Selecting Particular Units
	Counting Unique Units within Geographies

	Moving Forward …
	Building on this Tutorial

	Appendix
	Annotated .R Script for Cleaning and Merging MICR

